The Best Data Collection Tools for Machine Learning

Article By Alex Nguyen | February 05, 2020

Data collection is the single most important step in solving any machine learning problem. As such, teams that dive head first into projects without considering the right data collection process often don’t get the results they want. Fortunately, there are many data collection tools to help prepare training datasets quickly and at scale.

The best data collection tools are easy to use, support a range of functionalities and file types, and preserve the overall integrity of data. In this article, we outline the best data collection tools for machine learning projects.

 

Raw Data Collection Tools

The first obstacle for many data science projects is obtaining raw data. For more on how to obtain raw data for machine learning, check out our article on the topic

Listed below are tools that enable users to quickly source large volumes of raw data.

 

Data Scraping Tools

Web scraping describes the automated, programmatic use of an application to extract data or perform actions that users would usually perform manually, such as social media posts or images. The following companies offer an tools to extract data from the web:

  • Octoparse: A web scraping tool that lets users obtain public data without coding.
  • Mozenda: A tool that allows people to extract unstructured web data without scripts or developers.

 

Synthetic Data Generators

Synthetic data can also be programmatically generated to obtain large sample sizes of data. This data can then be used to train neural networks. Below are a few tools for generating synthetic datasets:

  • pydbgen: This is a Python library that can be used to generate a large synthetic database as specified by the user. For example, pydbgen can generate a dataset of random names, credit card numbers, company names and more. 
  • Mockaroo: Mockaroo is a data generator tool that lets users create custom CSV, SQL, JSOn and Excel datasets to test and demo software.

 

Data Collection Tools & Services

Most algorithms require data to be formatted in a very specific way. As such, datasets usually require some amount of preparation before they can yield useful insights. After you’ve collected enough raw data, you’ll still need to preprocess it before it’s useful for training a model. In addition to a data collection platform, the following companies also provide data labeling services:

 

Lionbridge AI

Lionbridge AI provides an open platform for users to design and manage their own data collection projects. With over 20 years of hands-on experience creating custom data for the world’s largest technology companies, Lionbridge AI has built the most intuitive data collection platform on the market. The tool works for all major file types, with unique features to handle text, audio, image & video data.

Lionbridge Image Annotation Platform
The Lionbridge Image Annotation Platform

 

The tool features an easy-to-use UI for engineers, researchers and PMs to easily manage workflow and quality. Furthermore, users are given the option to invite their own annotators onto the platform, or hire from Lionbridge’s network of over 1,000,000 qualified contributors.

 

Amazon Mechanical Turk

Amazon Mechanical Turk (also known as MTurk) is a crowdsourcing marketplace commonly used for data collection projects. As a requester on the platform, you can design, publish, and coordinate a wide range of data collection tasks (called HITs), such as surveys, transcriptions, and more. Amazon Mechanical Turk is a useful tool that allows you to define tasks, specify consensus rules, and define your own pricing structure.

Amazon Mechanical Turk Requester Dashboard
The Amazon Mechanical Turk Requester Dashboard

 

Although it is one of the cheapest data collection tools on the market, there are several drawbacks to using the MTurk platform. For one, it lacks key quality control features. Unlike companies like LionbridgeAI, MTurk offers very little in the way of quality assurance, worker testing, or detailed reporting. Furthermore, MTurk places a heavy project management burden on requesters to design tasks and recruit workers themselves.

 

LabelBox

LabelBox is a collaborative data tool for machine learning teams. The platform provides one place for data labeling, data management, and data science tasks. LabelBox’s features include bounding box image annotation, text classification, and more.

 

Figure Eight

This human-in-the-loop data platform provides its customers with services through a globally distributed contributor base. They have multiple processes embedded into their workflow to ensure accuracy and quality.

 

The success of any algorithm depends on the underlying data. A solution like Lionbridge simplifies and accelerates the data collection process, allowing machine learning teams to focus on core development. Over the past two decades, Lionbridge has collected custom training data for the world’s largest companies. Whether you need help gathering audio data for speech recognition or handwritten samples for OCR systems, Lionbridge can deliver the quality you need in over 300+ languages.

Interested? Get high-quality data now
The Author
Alex Nguyen

Alex manages content production for Lionbridge’s marketing team. Originally from San Francisco but based in Tokyo, she loves all things culture and design. When not at Lionbridge, she’s likely brushing up on her Japanese, letting loose at indie electronic shows or trying out new ice cream spots in the city.

Welcome!

Sign up to our newsletter for fresh developments from the world of training data. Lionbridge brings you interviews with industry experts, dataset collections and more.